Новини фізики
Миниатюрный взрыв сверхновой воспроизвели в лабораторных условиях | Друк |
Написав Paltsun   
Неділя, 12 червня 2016, 16:06

Используя лучи лазерного света, в 60000 миллиардов раз более мощные, чем свет лазерной указки, группа ученых из Оксфордского университета воспроизвела миниатюрное подобие взрыва сверхновой звезды в лабораторных условиях. Это событие может быть использовано для детального изучения взрывов сверхновых и других высокоэнергетических процессов, происходящих в глубинах космоса, в недрах специализированных установок, там, где достаточно просто можно произвести все необходимые измерения и наблюдения.

Напомним нашим читателям, что взрывы сверхновых являются завершающим этапом жизненного цикла большинства звезд и происходят тогда, когда эти звезды исчерпывают внутренние запасы ядерного «топлива». Эти взрывы порождают огромные ударные волны, разносящие материю погибшей звезды на расстояния в сотни световых лет, и эти взрывы являются одними из самых высокоэнергетических видов событий во Вселенной.

По идее, ударные волны взрыва сверхновых должны распространяться равномерно во всех направлениях, формируя сферу практически правильной формы. Во Вселенной можно встретить сферические следы взрывов сверхновых, но очень часто встречаются имеющие неправильную форму и множество завихрений, такие как космический объект под названием Cassiopeia A.

Для того, чтобы воспроизвести взрыв сверхновой в лаборатории, исследователи использовали лазер Vulcan, находящийся в распоряжении Лаборатории имени Рутэрфорда Апплетона. «Мы сфокусировали лучи трех мощных лазеров на мишени, в роли которой выступал тонкий пруток из углерода, находящийся внутри вакуумной камеры, заполненной достаточно разреженным газом» — рассказывает Джена Меинек (Jena Meinecke), одна из группы исследователей, — «Огромное количество энергии, заключенной в лучах лазерного света, нагрело материал мишени до температуры в несколько миллионов градусов. Это заставило мишень взорваться, создав ударную волну, распространяющуюся через среду разреженного газа».

То, что воспроизвели ученые в объеме вакуумной камеры, весьма похоже на взрыв сверхновой в миниатюре. Более того, ученые смоделировали наличие достаточно плотных газовых облаков и скоплений материи, которые, как правило, окружают любую умирающую звезду. В роли этих облаков выступали сетки, имеющие различный шаг ячейки, которые препятствовали прохождению ударной волны.

«Наш эксперимент показал, что после того, как ударная волна от миниатюрного взрыва сверхновой проходит сквозь сетку, она, эта ударная волна, приобретает неравномерный характер и образует массу завихрений, весьма похожих на те, которые видны на снимках Cassiopeia» — рассказывает профессор Джанлука Грегори (Gianluca Gregori), руководитель отдела физики Оксфордского университета. (источник)

 
В ЦЕРНе с высокой точностью измерили заряд антиводорода | Друк |
Написав Paltsun   
Неділя, 12 червня 2016, 16:05

Коллаборация ALPHA в ЦЕРНе провела измерение заряда антиводорода с точностью до восьмого знака после запятой. Работа ученых опубликована в журнале Nature Communications, кратко с ней можно ознакомиться на сайте ЦЕРНа.

В своем эксперименте ученые изучали траектории атомов антиводорода, вылетающих из специальной ловушки в пространство с электрическим полем. Если бы атом антиводорода имел отличный от нуля электрический заряд, то в присутствии внешнего электрического поля такой атом отклонялся бы от прямолинейной траектории. Ученые зарегистрировали 386 событий и в результате получили для заряда атома антиводорода значение, близкое к нулю.

Антиводород — связанное состояние античастиц, входящих в состав водорода. Атом антиводорода состоит, таким образом, из антипротона и позитрона (антиэлектрона). Античастица имеет те же массу и спин, что и частица, но противоположные знаки других характеристик частиц, например, электрического и цветового зарядов, барионных и лептонных квантовых чисел.

Во Вселенной наблюдается асимметрия вещества и антивещества: на одну античастицу приходится около десяти миллиардов частиц. Такую асимметрию не могут объяснить многие современные теории, включая инфляционную космологию. Ученые коллаборации ALPHA создали систему специальных ловушек, позволяющую удержать в связанном состоянии античастицы относительно продолжительный промежуток времени. С перезапуском Большого адронного коллайдера такие ловушки будут использоваться для изучения влияния гравитации на антиводород. (источник)

 
Майорановские нейтрино вновь ускользнули от физиков | Друк |
Написав Paltsun   
Неділя, 12 червня 2016, 16:02

Физики из США, Канады, России, Китая, Южной Кореи и Германии, входящие в состав коллаборации EXO-200, в своем эксперименте не обнаружили доказательств существования майорановских нейтрино. Исследование ученых опубликовано в журнале Nature, кратко с его содержанием можно ознакомиться на сайте Мюнхенского технического университета.

Исследователи в рамках эксперимента искали следы безнейтринного двойного бета-распада изотопа ксенона Xe-136, в результате которого электрический заряд атомного ядра ксенона увеличился бы на две единицы с испусканием двух бета-частиц (двух электронов). Ученые представили данные за последние два года исследований, согласно которым физикам не удалось наблюдать следы такого процесса. Работа специалистов позволила оценить нижний предел для периода безнейтринного полураспада Xe-136 в 1025 лет, что в миллион миллиардов раз больше времени существования Вселенной. Масса нейтрино по-прежнему оценивается десятыми долями электронвольт. (читать дальше)

Останнє оновлення на Неділя, 12 червня 2016, 16:04
 
«Бабочка Хофштадтера» помогла отключить проводимость графена | Друк |
Написав Paltsun   
Неділя, 12 червня 2016, 16:00

Ученые из Великобритании, Китая, США, Южной Кореи, России и Японии, в число которых входят нобелевские лауреаты Андрей Гейм и Константин Новоселов, открыли новые свойства графена, которые изменяют его проводимость. Работа ученых опубликована в журнале Nature Physics, кратко с ее содержанием можно ознакомиться на сайте Phys.org.

Ученые научились изменять свойства энергетической щели у графена. Для этого авторы нанесли графен на слой «белого графита» — нитрида бора с графитоподобной гексагональной (узлы решетки заключены в правильный многоугольник) аллотропной модификацией. Исследователи обнаружили, что такая комбинация позволяет регулированием взаимных ориентаций направлений в кристаллических решетках менять ширину энергетической щели у графена. Это связано с тем, что подложка из нитрида бора вызывает деформацию графеновой решетки, в связи с чем меняются ее проводящие свойства. (читать дальше)

 
Впервые обнаружены экситоны в металле | Друк |
Написав Paltsun   
Неділя, 12 червня 2016, 15:58

Ученые США и Сербии впервые обнаружили экситон в металле. Статья авторов опубликована в журнале Nature Physics, кратко с ней можно ознакомиться на сайте Phys.org .

Специалисты в своей работе исследовали взаимодействие света и материи: электромагнитной волны, падающей на серебряный кристалл. В толще металла обычное экситонное возбуждение, как считалось, может длиться около одной десятой квадриллионной (квадриллион в системе с короткой шкалой — это число с 15 нулями) секунды, что затрудняет его наблюдение. Специалистам удалось зафиксировать на поверхности серебряной пластины долгоживущее экситонное состояние, превышающее стандартное для металлов в 100 раз. Такое время жизни экситона теоретически было предсказано сербским ученым, а его коллегам из США удалось наблюдать квазичастицу в эксперименте.

Для этого специалистами использовалась специальная техника многомерной когерентной спектроскопии, которая трансформирует методы спектроскопии ядерного магнитного резонанса в спектроскопию видимого, ультрафиолетового и инфракрасного диапазонов излучения. В этом ученым помог лазер, который облучал пластинку электромагнитными импульсами длительностью 15 фемтосекунд.

Экситоном ученые называют долгоживущее возбужденное состояние в наносистеме, которое состоит из электрона и положительно заряженной дырки. Движение связанных электрона и дырки в кристалле и сопровождающие это процессы переноса энергии удобно описывать как перемещение квазичастицы — экситона.

Экситоны играют важную роль в процессах фотосинтеза и преобразованиях энергии в фотоэлементах. До исследований ученых экситонные возбуждения наблюдались только в диэлектриках и полупроводниках.

 
«ПочатокПопередня12345678910НаступнаКінець»

Сторінка 4 з 19